The Horsehead Mane PDR

Jérôme PETY
 IRAM & Obs. de Paris

and

Javier GOICOECHEA, Maryvonne GERIN,
Pierre HILY-BLANT, David TEYSSIER, Evelyne ROUEFF,
Harvey LISZT, Mathieu COMPIEGNE, Emilie HABART,
Alain ABERGEL, Jacques LE BOURLOT

5th IRAM 30m Summer School
Sep. 4 - Sep. 11 2009, Pradollano
Why PDRs are important? I. PDRs are everywhere

• Definition:
 – Photon-Dominated Regions or Photon-Dissociation Regions.
 – Far-UV illuminated: radiation with $6 < E < 13.6 \text{ eV}$
 \Rightarrow Radiation can’t ionize H atoms but it ionizes atoms with $E_p < 13.6 \text{ eV}$ (C, Si, S, Fe) and it dissociates and ionizes molecules.
 – Physics and chemistry dominated by the UV radiation field.

• Examples (see “PDR everywhere” Ossenkopf 2007).
 – Protoplanetary disk surfaces.
 – AGB circumstellar envelopes and Planetary Nebulae.
 – Interface between HII regions and dense molecular clouds, e.g. star-forming regions (Orion bar, NGC 2023, NGC 2024, NGC 7023, S106, S140, IC63, Carina, Monoceros, ...).
 – Diffuse or translucent clouds of local ISM.

All these sources also emit in local and high-z galaxies
\Rightarrow understanding them in our Galaxy sheds light on the distant universe.
Why PDRs are important? II. Possibility to accurately test chemistry.

- Complex gas phase chemistry *(hundred of species, thousand of reactions).*

- “Cold” and “diluted” gas. ⇒ **Difficult Theoretical/Experimental efforts.**
 ⇒ **Impossible to get reliable chemical rates for thousands of reactions.**

- Recent attempts to identify a few key chemical reactions in **well-studied astrophysical cases** *(Wakelam et al. 2004, 2006).*

- All “small” ISM molecules are detectable in PDRs.

 ⇒ **A few in-depth observational studies of PDRs can help to set up reliable chemical networks.**
Why PDRs are important? II.1 Possibility to accurately test physics.

- PDR models need special treatment of:
 - Gas phase chemistry (see previous slide).
 - Heating (photoelectric effect) and cooling (FIR/submm radiative transfer).
 - UV radiative transfer, \textit{i.e.} dust attenuation and line self-shielding (basically H$_2$ and CO).

- History:
 - 30 years of development.
 - \sim 10 independent codes with different goals, \textit{i.e.} approximations.
 - Same qualitative trends but large quantitative differences.
 \Rightarrow Additional difficulty to unambiguously interpret the data from ALMA and Herschel.
 \Rightarrow Large benchmarking effort since a few years.
Why PDRs are important? **II.2 Possibility to accurately test physics.**

http://www.ph1.uni-koeln.de/pdr-comparison/intro1.htm

Röllig et al. 2007.

Before the Leiden Workshop

After the Leiden Workshop

Model F1: $n_H = 10^3 \text{ cm}^{-3}$, $X = 10$, $T = 50 \text{ K}$

- Better understanding of the causes of the differences on “simple” test cases.
- Standard are implemented \Rightarrow PDR models are converging but where?
- Conclusion: Need of reliable molecular abundances in some simple sources that can serve as basic references.

The Horsehead Mane PDR

J. Pety, 2009
Horsehead:
One of the most famous object of the sky

ESO VLT:

Hubble Heritage:

But also a fantastic PDR laboratory.

The Horsehead Mane PDR

J. Pety, 2009
Horsehead mane geography:
I. The hunter constellation
Horsehead mane geography:
II. From the hunter constellation to the Orion Giant Molecular Cloud

⇒ $D \sim 400 - 450$ pc ($1'' \leftrightarrow 0.002$ pc).
Horsehead mane geography:

III. From the Orion Giant Molecular Cloud to the IC434 nebula
Orion bar and Horsehead mane geography:
IV. From the IC 434 nebula to the PDR region

The Horsehead Mane PDR

J. Pety, 2009
The Horsehead ID card: I. The environment from Bell labs ^{12}CO (J=1–0) wide-field map

- Exciting star: σOri (O9.5V) at 0.5° (3.5 pc), PA 76°. ζOri probably shadowed (Philipp et al. 2006).
- Far–UV intensity: $G_0 = 100$ (Habing) or $\chi = 60$ (Draine).
The Horsehead ID card: II. The global structure

KPNO $\text{H}\alpha + \text{BIMA} \, ^{12}\text{CO} \, (J=1-0)$ (Pound et al. 2003)

\Rightarrow Typical pillar \begin{itemize}
 \item Formed in ~ 0.5 Myr;
 \item Lifetime ~ 5 Myr.
\end{itemize}
The Horsehead ID card: III. Geometry

ISO 7 μm continuum (Abergel et al. 2003)

Filament width ⇒ Edge-on structure, star in the plane-of-sky.
The Horsehead ID card: IV. Kinematics

IRAM/30m 18O (J=2–1) (Hily-Blant et al. 2005)

Neck in \sim solid rotation (period \sim 4 Myr).

The Horsehead Mane PDR

J. Pety, 2009
The Horsehead ID card: V. Condensations

JCMT $850 \mu m$ and $450 \mu m$ continuum (Ward-Thompson et al. 2006)

\Rightarrow 1. East: $4 M_\odot$ in 0.15×0.07 pc, in gravitational viral equilibrium.

The Horsehead Mane PDR

J. Pety, 2009
The Horsehead ID card: V. Condensations

JCMT 850 μm and 450 μm continuum (Ward-Thompson et al. 2006)

\Rightarrow 2. West: $2 \, M_\odot$ in 0.31×0.13 pc;

Dynamics dominated by the ionisation front.

The Horsehead Mane PDR

J. Pety, 2009
The Horsehead ID card: VI. Summary

- KPNO Hα + BIMA 12CO (J=1–0) (Pound et al. 2003) ⇒ Typical pillar;
- ISO 7 µm continuum (Abergel et al. 2003) ⇒ Edge-on structure, star in plane-of-sky;
- IRAM/30m C\textsubscript{18}O (J=2–1) (Hily-Blant et al. 2005) ⇒ Neck in solid rotation;
- JCMT 850 µm and 450 µm continuum (Ward-Thompson et al. 2006) ⇒ West condensation (2 M⊙ in 0.31 × 0.13 pc) dynamics dominated by the ionisation front.
The Horsehead PDR ID card: I. Coordinate System

Transformations:
- 14° counter-clockwise rotation.
- $20''$ translation.

All the following images will be in this coordinate system, adapted to the comparison with models.
The Horsehead PDR ID card: II. Field-of-view vs resolution

- Radioastronomy dilemma:
 Single dish large field-of-view vs interferometer high angular resolution.

- Elliptic field-of-view at interferometer:
 \[I_{\text{obs}} = B_{\text{prim}} \cdot I_{\text{sky}} + N \Rightarrow I_{\text{cor}} = I_{\text{obs}}/B_{\text{prim}} = I_{\text{sky}} + N/B_{\text{prim}}. \]
 \(\Rightarrow \) Noise increases sharply at the edges and truncation
Radioastronomy dilemma:
Single dish large field-of-view vs interferometer high angular resolution.

Elliptic field-of-view at interferometer:

\[I_{\text{obs}} = B_{\text{prim}} \cdot I_{\text{sky}} + N \Rightarrow I_{\text{cor}} = \frac{I_{\text{obs}}}{B_{\text{prim}}} = I_{\text{sky}} + \frac{N}{B_{\text{prim}}}. \]

⇒ Noise increases sharply at the edges and truncation
The Horsehead mane ID card: III.1 A shielded, dense core

IRAM/PdBI H13CO$^+$ and DCO$^+$

(Pety et al. 2007)

- 4 K DCO$^+$ lines less than 50'' from edge imply
 - Shielded: $A_v \geq 10$,
 - Cool: 10–20 K,
 - Dense: $n(H_2) \geq 2 \times 10^5$ cm$^{-3}$.

- Fractionation levels
 - $[\text{DCO}^+]/[\text{HCO}^+] = 2\%$ in dense core.
 - $[\text{DCO}^+]/[\text{HCO}^+] < 0.1\%$ in PDR gas.

- Note: Bright DCO$^+$ lines is a serendipitous discovery.
The Horsehead mane ID card: III.2 Behind a far UV illuminated PDR

NTT/SOFI H$_2$ 2.1 μm + IRAM/PdBI HCO

(Gerin et al. 2009)

- 1.5 K HCO lines at 15'' from edge imply
 - Illuminated: $A_v \sim 1.5$,
 - Warm: $T_{\text{gas}} \sim 100 - 200$ K,
 - Relatively dense: $n_H \sim 4 \times 10^4$ cm$^{-3}$.
- HCO Abundances in PDR gas
 - $[\text{HCO}]/[\text{H}_2] \sim 1.7 \times 10^{-9}$,
 - $[\text{HCO}]/[\text{H}^{13}\text{CO}^+] \sim 55$,
 - $[\text{HCO}]/[\text{HCO}^+] \sim 1$.
- HCO: A surface tracer of dense FUV illuminated molecular gas.
- Note: Bright HCO lines is a serendipitous discovery.
The Horsehead PDR ID card: III. Density profile

NTT/SOFI H_2 2.1 μm + IRAM/PdBI 12CO and $C^{18}O$

(Habart et al. 2005)

- H_2 filament width ($\sim 5''$)
 \Rightarrow PDR inclination on the plane-of-the-sky $< 5^\circ$.
- Tracer stratification
 \Rightarrow Steep density gradient: 10^5 cm$^{-3}$ in 10'' or 0.02 pc.
- Density + Thermal profiles
 \Rightarrow Roughly uniform thermal pressure: $\sim 4 \times 10^6 K$ cm$^{-3}$.

The Horsehead Mane PDR

J. Pety, 2009
The Horsehead PDR ID card: IV. The kinetic temperature

VLA+Effelsberg NH\textsubscript{3} 1.3 cm rotation-inversion lines

(Pety et al., in prep.)

- \(T_{\text{rot}}(2, 2 - 1, 1) = \frac{41.18}{\ln \left(\frac{3.53 \int T(1, 1) d\nu}{\int T(2, 2) d\nu} \right)} \).
- From Effelsberg data only (\(\theta \sim 40'' \)): 15 K < \(T_{\text{rot}} \) < 25 K \(\Rightarrow \) 15 K < \(T_{\text{kin}} \) < 40 K.
- From Effelsberg+VLA data (\(\theta \sim 3'' \)): 15 K < \(T_{\text{rot}} \) < 35 K \(\Rightarrow \) 15 K < \(T_{\text{kin}} \) < 70 K.
PAHs in the Horsehead mane: I. Survival in HII region
Spitzer/IRS 6.2, 7.7, 8.6 and 11.3 µm AIBs + H₂ and NeII
(Compiègne et al. 2007)

- Observational facts:
 - Strong 11.3 µm emission in the HII region, correlated with NeII and Hα emission.
 - No associated 6.2, 7.7 or 8.6 µm emission in the HII region.

- Consequences:
 - PAHs may survive 5000 yrs in a HII region with $G_0 = 100$ and no photons above 25 eV.
 - 25-45% of neutral PAHs in HII region.
PAHs in the Horsehead mane: II.1 Link with the small hydrocarbons
IRAM/PdBI CCH, c-C$_3$H$_2$ and C$_4$H (Pety et al. 2005)

- Good spatial correlations of small hydrocarbons between them and with ISO 7 μm.
- Best PDR model fails to reproduce the abundances of the small hydrocarbons.
- Possible explanations:
 - Photo-erosion of PAHs (large C reservoirs).
 - Turbulent mixing of material produced in the shielded part (Lesaffre et al. 2007).
PAHs in the Horsehead mane: II.2 Link with the small hydrocarbons

IRAM/PdBI CCH, c-C$_3$H$_2$ and C$_4$H (Pety et al. 2005)

- Good spatial correlations of small hydrocarbons between them and with ISO 7 µm.
- Best PDR model fails to reproduce the abundances of the small hydrocarbons.
- Possible explanations:
 - Photo-erosion of PAHs (large C reservoirs).
 - Turbulent mixing of material produced in the shielded part (Lesaffre et al. 2007).
● Importance of multiple species observations:
 - Before DCO^+ observation: CCH hole is a deconvolution artifact.
 - After DCO^+ observation: CCH hole is an evidence of its depletion on grains in the cold core.
Sulfur chemistry: I. Importance of mapping
IRAM/PdBI CS (J=2–1) + IRAM/30m CS, C34S and HCS$^+$
(Goicoechea et al. 2006)

- Different spatial morphologies of CS and small hydrocarbon emissions.
- Cross cuts only give rise to very different behavior depending on $\delta y \Rightarrow$ Mapping is essential (whenever possible).
Sulfur chemistry: II. Importance of detailed modelling

IRAM/PdBI CS (J=2–1) + IRAM/30m CS, C$_{34}^4$S and HCS$^+$

(Goicoechea et al. 2006)

- **Important improvement:** Line modelling through a Monte-Carlo radiative transfer.
- **Comment:** Large effort ⇒ Back to selected cross cuts for modelling purpose.
- **Physical result:** PDR model predicts a too step temperature decrease (Prediction: 10 K, observed: at least 30 K at $\delta x = 30''$).
Sulfur chemistry: III. Importance of isotologues

IRAM/PdBI CS (J=2–1) + IRAM/30m CS, C\(^{34}\)S and HCS\(^+\)

(Goicoechea et al. 2006)

- **Physical result:** Presence of a \(5.10^3\) cm\(^{-3}\) halo.

- **Comments:**
 - A difficult choice: Bright optically thick (with complex radiative effects for high dipole moment molecules) vs faint optically thin lines.
 - A must: Multi-line studies and isotopologue observations needed to understand excitation effects.
Sulfur chemistry: IV. Importance of reactive ions

IRAM/PdBI CS (J=2–1) + IRAM/30m CS, C34S and HCS$^+$

(Goicoechea et al. 2006)

- Chemical result: $[S/H]_{PDR} = 0.25 [S/H]_{solar}$, i.e. almost undepleted sulfur abundance compared to diffuse ISM.
- Reason: Latest reaction rates and branching ratios (Montaigne et al. 2005)
 - HCS$^+$ + e$^-$ \rightarrow CS + H (0.19 instead of 1)
 - HCS$^+$ + e$^-$ \rightarrow CH + S and/or SH + C (0.81 instead of 0)
 - OCS$^+$ + e$^-$ \rightarrow CO + S (0.83)
 - OCS$^+$ + e$^-$ \rightarrow CS + O (0.14)
 - OCS$^+$ + e$^-$ \rightarrow SO + C (0.03)
- Comment: Such faint lines would be difficult to observe with an interferometer \Rightarrow Complementarity of interferometer and single-dish observation.
Sulfur chemistry: V. Follow-up
IRAM/30m CS, H_2S and SO
(Goicoechea et al. in prep)

Follow-up:
Biased survey + mapping of some sulfur molecules
Chemistry of the formyl radical: I. Observations
IRAM/PdBI + IRAM/30m $^{13}\text{CO}^+$ and HCO (Gerin et al., 2009)

- Relative abundances
 - $[\text{HCO}]/[^{13}\text{CO}^+] < 1.6$ in dense core.
 - $[\text{HCO}]/[^{13}\text{CO}^+] \sim 55$ in PDR gas.
- A surface tracer.
Do we understand (i.e. do we reproduce) the “observed” abundances?

It is often easier to reproduce relative abundances (e.g. \([\text{HCO}] / [\text{H}^{13}\text{CO}^+]\)) than absolute ones (i.e. \([\text{HCO}] / [\text{H}]\)).
Ionization fraction profile: I. Models
(Goicoechea et al. 2009)

- Model ingredients
 - **Standard** cosmic ray ionization rate: $\zeta = 3 \times 10^{-17} \text{ s}^{-1}$
 - Metalicities:
 * **Standard** (strong depletion): $[M] = 10^{-9}$ (solid);
 - No PAHs.

- Ionization fraction (i.e. electronic abundance) set by
 \[
 n(e^-) = \sum_i n_i(\text{cations}^+) - \sum_i n_i(\text{anions}^-). \tag{1}
 \]

- 3 regions
 \[
 \begin{array}{lll}
 A_v & \text{Region kind} & \text{e}^- \text{ source} \\
 \lessgtr 2 & \text{UV irradiated} & \text{Ionization of C;} \\
 2 \text{ to } 6 & \text{Transition} & \text{Ionization of S;} \\
 \gtrsim 6 & \text{UV shielded} & \text{Ionization of metals, e.g. Fe, Mg, Na, ...}
 \end{array}
 \]
Ionization fraction profile: II.1 Observational probes
(Goicoechea et al. 2009)

- H_3^+ formation: $\propto \zeta_{CR} n_H$.
- $^{13}HCO^+$
 - Formation: Protonation + Fractionation
 * $^{13}CO + H_3^+ \rightarrow H^{13}CO^+ + H_2$;
 * $^{13}CO + H^{12}CO^+ \leftrightarrow H^{13}CO^+ + ^{12}CO + \Delta E(= 9 K)$.
 - Destruction: Dissociative recombination
 * $H^{13}CO^+ + e^- \rightarrow ^{13}CO + H$.
- $^2HCO^+$
 - Formation: Deuteration
 * $H_3^+ + HD \leftrightarrow H_2D^+ + H_2 + \Delta E(= 232 K)$;
 * $CO + H_2D^+ \rightarrow DCO^+ + H_2$.
 - Destruction: Dissociative recombination
 * $DCO^+ + e^- \rightarrow CO + D$.
- HOC^+
 - Formation:
 * $C^+ + H_2O \rightarrow HCO^+/HOC^+ + H$;
 * $CO^+ + H_2 \rightarrow HCO^+/HOC^+ + H$.
 - Destruction: Isomerization
 * $HOC^+ + H_2 \rightarrow HCO^+ + H_2$.
Ionization fraction profile: II.2 Observational probes
(Goicoechea et al. 2009)

- Shielded core:
 - Absolute abundances correct in strong metal depletion case.
 - $[\text{DCO}^+] \propto [\text{H}^{13}\text{CO}^+]$ (common destruction mechanism).
 \Rightarrow Low ionization fraction.

- Illuminated PDR:
 - $[\text{HOC}^+] /[\text{H}^{13}\text{CO}^+]$ correct;
 - Measured absolute abundances larger than predicted.
 \Rightarrow High ionization fraction.
Ionization fraction profile: III.1 Influence of PAHs
(Goicoechea et al. 2009)

- Introduction of PAHs:
 - $[\text{PAH}] = 10^{-7}$ or 1% of the dust mass;
 - Typical size: 100 carbon atoms;
 - No evolution of the distribution with A_v.

- Illuminated region: No influence because C^+ abundance is larger by order of magnitude.

- Transition region:

- Shielded region:
Ionization fraction profile: **III.2 Influence of PAHs**
(Goicoechea et al. 2009)

- Introduction of PAHs:
 \([\text{PAH}] = 10^{-7}, \sim 100\ \text{carbons}\).
- Illuminated region: No influence.
- Transition region:
 - Without PAHs:
 * Sulfur ionization = Source of electrons.
 - With PAHs:
 * PAH\(^-\) formation: Electron attachment.
 - \(\text{PAH} + e^- \rightarrow \text{PAH}^- + h\nu\).
 * PAH\(^-\) destruction:
 - \(\text{PAH}^- + h\nu \rightarrow \text{PAH} + e^-\);
 - Neutralization by cations.
 - High electron density and low UV field \(\Rightarrow\) enough PAH\(^-\) to neutralize \(S^+\) \(\Rightarrow\) Much more neutral sulfur for the same elemental abundance.
- Shielded region:

The Horsehead Mane PDR
J. Pety, 2009
Ionization fraction profile: III.3 Influence of PAHs
(Goicoechea et al. 2009)

- Introduction of PAHs:
 \([\text{PAH}] = 10^{-7}, \sim 100\) carbons.

- Illuminated region: No influence.

- Transition region: Much more neutral sulfur for the same elemental abundance.

- Shielded region:
 - Without PAHs:
 * Fast charge transfer to metal \(m^+ + M \rightarrow m + M^+\);
 * Slow metal neutralization by electrons.

 \[\Rightarrow \text{Metals} = \text{electron source}.\]

 - With PAHs:
 * PAH\(^-\) easily formed through electron attachment \(\text{PAH} + e^- \rightarrow \text{PAH}^- + h\nu\);
 * Quick metal neutralization by PAH\(^-\).

 \[\Rightarrow \text{PAH}^- \text{ more abundant than electrons and neutral metals}.\]
Ionization fraction profile: **III.4 Influence of PAHs**

(Goicoechea et al. 2009)

- **Introduction of PAHs:** $[\text{PAH}] = 10^{-7}, \sim 100 \text{ carbons}$.

- **Illuminated region:** No influence.

- **Transition region:** Much more neutral sulfur for the same elemental abundance.

- **Shielded region:** PAH$^-$ more abundant than electrons and neutral metals.

- **Degeneracy:**
 - Standard metalicity, no PAHs;
 - High metalicity and standard PAHs.

- **Question:** Do PAHs exist in the shielded region?

Test metallicity for $\zeta_{CR}=3 \times 10^{-17} \text{ s}^{-1}$
The PDRs and Herschel: I. HIFI

- The Herschel satellite:
 - 3.5 m single-dish antenna.
 - Wavelengths/frequencies: from 450 GHz (672 µm) to 5.5 THz (55 µm).
 - Angular resolution: from 40'' to 10''.
 - Cooled instruments ⇒ 3 years life.
- HIFI: 480 - 1910 GHz (625 - 157 µm)
 - Single-beam heterodyne instrument ⇒ high spectral resolution.
 - Key science targets for PDR studies:
 * CII 158 µm, NII 206 µm fine structure lines: PDR cooling lines, kinematics of the PDR/ionized gas interface.
 * Water (H₂O, HDO, H₂¹⁸O): Thermal emission is visible only from space.
 * Hydrides (NH, NH₂, OH⁺, CH⁺, H₃O⁺,…): Light molecules ⇒ high frequency rotational lines: Building blocks of photo-induced / warm chemistry.
The PDRs and Herschel: I. PACS

- PACS:
 - Instrument:
 * Multi-pixel: $5 \times 5 \Rightarrow 50''$ field-of-view.
 * Medium spectral resolution: $R \sim 2000 - 4000 \Rightarrow$ unresolved line profiles.
 * Sensitive.
 - Key science targets for PDR studies:
 * Far-IR dust: Peak of dust thermal emission (i.e. dust heated by UV photons release their energy in the Far-IR). In combination with [CII] and [OI], the dust Far-IR spectro-energy distribution gives access to the photo-electric heating mechanism.
 * OI 63 and 145 μm, CII 158 μm: Physical conditions in PDRs (G_0, n, T).
 * OIII 88 μm, NIII 57 μm, NII 122 and 206 μm: Physical properties of ionized (HII) gas (n_e, T_e, ...).
 * High-J lines of molecules (H_2O, OH, CO, NH$_3$, ...).
On the need of consistency to make reliable observational benchmarks for models

The Horsehead Mane PDR

J. Pety, 2009
The Horsehead mane: An observational benchmark for PDR models

- Well understood, simple geometry: almost 1D, edge-on.
- Well constrained density.
- Current effort to constrain the thermal profile.
- Rich chemistry (i.e. lot's of surprises).
- Close-by (400 pc), low illumination ($\chi \sim 60$), high density (10^5 cm^{-3})
 \Rightarrow typical spatial scales: 1 to 50″.

\Rightarrow Good source to serve as reference to models.
The Horsehead mane:
An observational benchmark for PDR models

- Well understood, simple geometry: almost 1D, edge-on.
- Well constrained density.
- Current effort to constrain the thermal profile.
- Rich chemistry (i.e. lot's of surprises).
- Close-by (400 pc), low illumination ($\chi \sim 60$), high density (10^5 cm^{-3}) ⇒ typical spatial scales: 1 to 50″.

⇒ Good source to serve as reference to models.
Bibliography

Pety, J., Goicoechea, J. R., Gerin, M., et al. 2007, in Molecules in Space and Laboratory, 13

The Horsehead Mane PDR

J. Pety, 2009